
Security audit of smart contracts
	

Addresses of smart contracts on mainnet:

Lottery1ETH: 0x865EE5df064bc1F4A39B95B75e612dD86011d35b

Lottery10ETH: 0x150dBfC384bA5C13c304EfD2Efee73Cc57cC2C16

Lottery100ETH: 0xb02Ae0bd0e1431337fCe668d76A6BA4b6eCADD84

RefStorage: 0x978275D7652a35DC8Df9ce6B62822Aea6A97589D

Audit result:

In Lottery project's code was not discovered critical vulnerabilities and
backdoors. Contracts can be used in real funds turnover.

Limitations associated with obtaining random numbers in smart contracts
acceptable due to relatively small prizes. Contracts can be used in real funds
turnover.

Contract owners may not suspend the current circulation of tickets, as well as
may not prevent the distribution of prizes and change the key settings of
circulation (except for the referral program).

Drawing can be initiated by any user (sending any number of ETH to the lottery
address), after a few blocks after the purchase of the last ticket in the draw (see
the description of the functional). Then (if the project is not paused), the sale of
a new circulation automatically begins.

Note that one of the disadvantages of this code is the lack of commenting,
which complicates the understanding of the functionality of contracts. We thank
developers of contracts, who clarified some technical solutions.

Description

This audit reviewed contracts “Lottery”, as well as sub-contracts «RefStorage»
and «Storage». The code of each smart contract is verified on EtherScan and
opened for viewing.

All three contracts are used for 3 types of lotteries: 100 tickets, 1,000 tickets
and 10,000 tickets. In all variations, a contract code is identical except for such
parameters as the number of lottery tickets and winners, prize amounts and
some numerical values in technical implementation of obtaining a pseudo
source of entropy (see below for details).

Note: In this contract the library of safety computing SafeMath that
prevent mistakes in smart contracts computing is NOT used. On the basis
of computing's context, there are no possible cases of transfusion in a
contract.

Note: this contract may have had a potential backdoor in the prize
mailout, but it uses "send" rather than "transfer" for ETH sending. This
eliminates owner's possibility to resist funds mailout.

Lottery's characteristics:

The ticket's price in all contracts is uniform and unchangeable: 0.01 ETH. (line
204)
In one transaction it is possible to buy only 1 ticket.

Note: if the amount sent is less than the ticket's price, transaction will be
rejected, if higher – change will be automatically returned (lines 261-
263).

Note: the lottery ticket in the project cannot be purchased from another
smart contract, which excludes mass auto-purchase. A special modifier
NotFromContract (line 227) is used for that.

Winners defining and prize drawing start after all tickets in the cycle are sold
(100, 1000, 10000 tickets), then the cycle starts again (while first ticket is
being purchased).

There are 3 types of winners: Silver, Gold, Brilliant.

Number of winners / winning amount (lines 215-218):	
 100 tickets	 1000 tickets	 10000 tickets	
Silver 10 / 0.02 ETH 20 / 0.1 ETH 40 / 0.5 ETH
Gold 2 / 0.05 ETH 5 / 0.2 ETH 10 / 1.0 ETH
Brilliant 1 / 0.50 ETH 1 / 5.0 ETH 1 / 50.0 ETH

Note: each draw is held independently among all lottery tickets,
therefore, the same ticket can theoretically be the winner of several
prizes.

Referral programm:

There is a unified referral system in the project, which implemented by a
separate RefStorage contract. The system is placed in a separate contract to
ensure that the specified referrer is attached in all types of project's lotteries.

The referrer is indicated in "Data" box when buying a ticket. For data processing
from "Data" box, a code contains standard method bytesToAddress (lines 357-
362).

Note: referral program's key parameters in a contract can be changed by
the owner. (lines 142-152)

Bonus to a referrer and a lottery participant:
"Prize" variable (line 120): the default value is 0.00005 project tokens
(50000000000000 excluding decimal places). (the actual information can be
found in "read contract" tab in RefStorage contract:
0x978275D7652a35DC8Df9ce6B62822Aea6A97589D)

Note: in the code (line 120), the prize is specified in the form of 0.00005
ether which is the form of writing the number 50000000000000, since
the prefix “ether” in Solidity adds 18 zeros after the decimal point (that is
how many decimal places the project token has).

Note: GOLD RUBLE (GRUB) bonus token contract is
0x9f9EFDd09e915C1950C5CA7252fa5c4f65ab049b (line 139).

This amount is issued once in a certain interval according to the number of
purchased tickets, after specifying a referrer, and also issued to each winner of
"Gold" type.

"Interval" variable (line 121): the default value is 100 tickets. (the actual
information can be found in "read contract" tab in RefStorage contract:
0x978275D7652a35DC8Df9ce6B62822Aea6A97589D)

Also, "interval" variable sets the minimum threshold of purchased tickets,
allowing a participant to become a project referrer.

There are 3 key methods implemented in "Storage" contract code (all of them
are available for calling only a limited list of addresses, according to the code's
logic-lotteries contracts (lines 133-136):

NewTicket (154-164) – a mark on a new ticket purchase, if 100 tickets have
been purchased since the referrer's indication, both a user and a referrer
receive a bonus. The bonus is sent every 100 tickets if there are enough tokens
on the contract balance.

AddReferrer (166-173) – pinning a referrer.

Note: a referrer is indicated once and cannot be changed in the future.

SendBonus (175-181) – send a bonus to a user according to the code logic - to
a winner Gold type.

Storage contract:

For the system of Gold type winners selection's functioning, there is an identical
contract "Storage" in each lottery type (lines 58-112). This contract is a
temporary storage of data on the current leaders in the number of purchased
tickets. This contract redeploys during each cycle of drawing (line 331). This
technical solution is implemented in a contract because it is less expensive to
create a new data warehouse than to clear the previous one.

Two methods are implemented in this contract:
Purchase (70-91) – a method available for calling only for the main lottery
contract. The logic of this method saves the number of purchased tickets in this
cycle for a user, and if necessary, erases previous records.

Draw (93-110) – info function transmitting the leaders in purchased tickets in
the current cycle. This method is used by the project's main contract during the
prize mailout.

The main contract:

The constructor function of the contract (235-241) is called once-only at
deployment contract to the network, the code sets variables to store addresses
of Storage contracts, RefStorage, pseudococaine LotteryTicket and
WinnerTicket, and updates the “gameCount”.

Note: in the Read Contract tab on EtherScan, you can always see how
many ticket draws have already been played by looking at the gameCount
counter.

Ticket purchase is carried out using the Fallback function, which is
automatically called when sending to the ETH contract address (lines 243-279).
For correct functioning in the code spelled out a lot of checks and conditions
for the drawing, installation referrer, return delivery, ticket purchase.

The drawing's principle:

The drawing mechanism operates in two transactions: installation of a future
reference block and the drawing itself.

All the key functionality is in the internal Drawing function (lines 281-342),
which is automatically called when any ETH is sent (even 0), when all tickets in
the draw are redeemed.

In other words, to initiate the drawing of prizes after the redemption of the
entire circulation, it is necessary to send any number of ETH to the address of
the contract (even 0). If more than 0.01 ETH is sent, the first ticket in the next
cycle will be automatically purchased.

During the last ticket's purchase in the cycle (100, 1000 or 10000), a certain
future Ethereum reference block is set: +10 blocks for the first contract, +20
for the second and +40 for the third (line 286).
It is the chain of block hashes (10, 20 or 40) that independently defines the
winners.

The next transaction must pass in the period from the reference block to 250
blocks from the previous transaction.	All transactions for the conduct of the
distribution of prizes or to purchase tickets to the waiting period of the
reference block will be reverted (line 283).

Note: In the Ethereum network, it is possible to get data only about the
last 256 blocks, for all the rest requested hash will be known in advance –
0. This limitation accounted for in the lottery code, and in excess of 250
blocks of the reference block to be installed again (lines 288-290).	

Then the winners are defined and prizes are sent out in this order:

1) A simple principle of defining is used for Silver type winners: one block hash
defines one winner (lines 292-297).
The logic doesn't require complications because prize for this position is from
0.02 to 0.5 ETH, which is a small amount, therefore, it is economically
unprofitable to manipulate block hashes using large mining capacities.

2) Gold type winners are defined in advance: they are those users who have
purchased the largest number of tickets in this cycle. (lines 299-313)
A query about the winners is done in "Storage" sub-contract (line 306).

Note: among two users who purchased the same number of tickets, the
one whose the last ticket's purchase transaction was earlier in Ethereum
network takes the highest place.

3) The complicated logic of defining is used for Brilliant type winners: draw's
outcome is influenced by a chain of independent blocks (lines 315-327)
For a circulation of 100 tickets 7 blocks are used 7, for 1000 tickets – 10
blocks, for 10,000 tickets - 14 blocks (line 315).
The process of winner selection is as follows: the selection of lottery tickets is
reduced by 2 times with each Ethereum block involved (lines 319-321).

Example of the lottery's first type, stepwise winner defining using a chain of 7
blocks:
100 – 50 – 25 – 12.5 – 6.25 – 3.125 – 1.5625 – 1.

Each lottery ticket corresponds to a unique combination of hash blocks. The
exact definition of the winning ticket is due to the use in calculations of
magnitude 1e18 (lines 317, 324).

Each lottery ticket corresponds to a unique combination of hash blocks. The
exact definition of the winning ticket is due to the use of the multiplier 1e18
(lines 317, 324).

Therefore, in order to win a certain ticket in the draw of 10,000 tickets, it is
necessary that 14 consecutive blocks of hash correspond to the required to win
this ticket, if at least one hash is changed, then the winner will be another
ticket.

Next, the cycle is updated (lines 329-332).

Also, the cost of winner defining and sending prizes to a transaction sender
(lines 290, 334-336) are replenished. In other words, all the costs of sending
the transaction of buying the first ticket are paid from the balance of the smart
contract, and the user also buys a ticket.

Remaining balance is sent to a project owner.

After successful performing of the "drawing" method, a standard purchase of
the first ticket in the new cycle occurs.

An example of a transaction:

An example of a test transaction of drawing prizes in the 100 ticket draw can
be seen here:
https://etherscan.io/tx/0x3be1c7d6a475125927e643ec61bdd7a7bec1948cb5
f47295ec3772bbe43b3bbf

As can be seen from the transaction: the first was sent prizes such as Silver (10
times in 0.02 ETH), then the 2nd prize at the 0.05 ETH for the winners such as
Gold, 0.5 for the Brilliant ETH, and was further restored transaction cost for the
sender ~ 0.00446 ETH, and the remainder is sent to the developer's wallet ~
0.1955 ETH.

Note: in this draw, almost all tickets were purchased from one address,
and only the second gold prize was issued to another address.

In addition:

A "pause" function is implemented in a contract (lines 214, 245-247, 251, 344-
350). In case the lottery being paused, a contract is terminated only after the
current draw's end, i.e. the pause prevents only the first ticket purchase and
cannot interfere with the current cycle.

The code has a function of ERC20 tokens withdrawal from a contract
(apparently to clear a contract from bounty and advertising) (lines 352-355).

Info functions are available in "read on etherscan" tab:
AmountOfPlayers – the number of sold tickets in the current cycle.
ReferrerOf - user referrer (if any).
TicketsOf – the total number of ever purchased tickets by a user.

Also there is a standard Ownable contract in the code (36-56) for
implementation of contract ownership right, a short interface of ERC20
standard (3-6).

The contracts implemented a system of events (220-225) to transmit
information about events in the blockchain to the external environment.

In the code, the event is called using the emit token.

Implemented two pseudo tokens for calling special events (8-34) Lottery Ticket
and Winner Ticket to lottery ticket buyers and winners respectively. The call

data events displayed on EtherScan as a reference token RC20 with the
appropriate name. These pseudo tokens have no real value and do not affect
the functionality of contracts.

	

